If it's not what You are looking for type in the equation solver your own equation and let us solve it.
175=4x+x^2
We move all terms to the left:
175-(4x+x^2)=0
We get rid of parentheses
-x^2-4x+175=0
We add all the numbers together, and all the variables
-1x^2-4x+175=0
a = -1; b = -4; c = +175;
Δ = b2-4ac
Δ = -42-4·(-1)·175
Δ = 716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{716}=\sqrt{4*179}=\sqrt{4}*\sqrt{179}=2\sqrt{179}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{179}}{2*-1}=\frac{4-2\sqrt{179}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{179}}{2*-1}=\frac{4+2\sqrt{179}}{-2} $
| -8-6y=8+2y | | 62=7.5÷x | | 8z+3;z=8, | | 90=5x*x | | 4x-21=117 | | -2(5+6m)+16=-3(2m-9) | | 6n-7=1n+8 | | 2/3a−7+7/18a−51/6= | | b×4=20 | | 9x+135=-8 | | 7.5+x=62 | | 13+g=26 | | a^2=64a | | -4j=-5j-2 | | a^2=64a2=64 | | 2x+36+7x-9=180 | | 1.33=(8/6x) | | 8x+6=2(3-x) | | 3.2x+8=-12 | | 22-5(6v-1)=2v+13 | | 2n-6=4n+6 | | 8/(6x)=1.33 | | 3m-5m+10=36 | | -9+x/5=-5 | | 3(x−1)(x+5)=(2x(x−5))= | | 3(x−1)(x+5)=(2x(x−5)) | | (8/(6x))=1.33 | | 4/r+28=11 | | 35r+600=55r | | 3n+5=4n-30 | | 35r+600=55 | | 0.75(2x-6)+0.5=0.4(3x+20) |